We present the first accurate rate coefficients for the rotational excitation of CO by H2O in the kinetic temperature range 5–100 K. The statistical adiabatic channel method (SACM) is combined with a high-level rigid-rotor CO−H2O intermolecular potential energy surface. Transitions among the first 11 rotational levels of CO and the first 8 rotational levels of both para-H2O and ortho-H2O are considered. Our rate coefficients are compared to previous data from the literature and they are also incorporated in a simple non-LTE model of cometary coma including collision-induced transitions, solar radiative pumping and radiative decay. We find that the uncertainties in the collision data have significant influence on the CO population distributi...