Regularizing preconditioners for accelerating the convergence of iterative regularization methods and improving their accuracy have been extensively investigated both in Hilbert and Banach spaces. For deconvolution problems, the classical approach defines preconditioners based on the circular convolution. On the other hand, for regularization methods, it has been recently shown that a preconditioner preserving the structure of the convolution operator can be more effective. Such a preconditioner can improve both restoration quality and robustness of the method with respect to the choice of the regularization parameter when compared with the non-structured ones. In this paper we explore the use of structure preserving preconditioning for nor...