peer reviewedaudience: researcher, professional, studentAn advanced modeling framework is developed for predicting the failure of ductile materials relying on micromechanics, physical ingredients, and robust numerical methods. The approach is based on a hyperelastic finite strain multi-surface constitutive model with multiple nonlocal variables. The three distinct nonlocal solutions for the expansion of voids embedded in an elastoplastic matrix are considered: a void growth phase governed by the Gurson-Tvergaard-Needleman yield surface, a void necking coalescence phase governed by a heuristic extension of the Thomason yield surface based on the maximum principal stress, and a competing void shearing coalescence phase triggered by the maximu...