In this dissertation, a theoretical framework based on concentration inequalities for empirical processes is developed to better design iterative optimization algorithms and analyze their convergence properties in the presence of complex dependence between directions and step-sizes. Based on this framework, we proposed a stochastic away-step Frank-Wolfe algorithm and a stochastic pairwise-step Frank-Wolfe algorithm for solving strongly convex problems with polytope constraints and proved that both of those algorithms converge linearly to the optimal solution in expectation and almost surely. Numerical results showed that the proposed algorithms are faster and more stable than most of their competitors. This framework can be applied for d...