International audienceIt is well known that model order reduction techniques that project the solution of the problem at hand onto a low-dimensional subspace present difficulties when this solution lies on a nonlinear manifold. To overcome these difficulties (notably, an undesirable increase in the number of required modes in the solution), several solutions have been suggested. Among them, we can cite the use of nonlinear dimensionality reduction techniques or, alternatively, the employ of linear local reduced order approaches. These last approaches usually present the difficulty of ensuring continuity between these local models. Here, a new method is presented, which ensures this continuity by resorting to the paradigm of the partition of...
Les méthodes de réduction de modèles offrent un cadre général permettant une réduction de coû...
The solution of structural problems with nonlinear material behaviour in a model order reduction fra...
International audienceThis paper presents the use of the so called Proper Generalized Decomposition ...
It is well known that model order reduction techniques that project the solution of the problem at h...
Local model order reduction methods provide better results than global ones to problems with intrica...
Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretiza...
International audienceThis paper deals with the extension of proper generalized decomposition method...
We propose a reduced order modelling technique based on a partitioning of the domain of study in the...
This paper focuses on the efficient solution of models defined in high dimensional spaces. Those mod...
International audienceThis paper revisits a powerful discretization technique, the Proper Generalize...
We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameteri...
International audienceThis paper revisits a new model reduction methodology based on the use of sepa...
In this paper we address the new reduction method called Proper Generalized Decomposition (PGD) whic...
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variabl...
Separated representations at the heart of Proper Generalized Decomposition are constructed increment...
Les méthodes de réduction de modèles offrent un cadre général permettant une réduction de coû...
The solution of structural problems with nonlinear material behaviour in a model order reduction fra...
International audienceThis paper presents the use of the so called Proper Generalized Decomposition ...
It is well known that model order reduction techniques that project the solution of the problem at h...
Local model order reduction methods provide better results than global ones to problems with intrica...
Solutions of partial differential equations could exhibit a multiscale behavior. Standard discretiza...
International audienceThis paper deals with the extension of proper generalized decomposition method...
We propose a reduced order modelling technique based on a partitioning of the domain of study in the...
This paper focuses on the efficient solution of models defined in high dimensional spaces. Those mod...
International audienceThis paper revisits a powerful discretization technique, the Proper Generalize...
We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameteri...
International audienceThis paper revisits a new model reduction methodology based on the use of sepa...
In this paper we address the new reduction method called Proper Generalized Decomposition (PGD) whic...
Hierarchical Model reduction and Proper Generalized Decomposition both exploit separation of variabl...
Separated representations at the heart of Proper Generalized Decomposition are constructed increment...
Les méthodes de réduction de modèles offrent un cadre général permettant une réduction de coû...
The solution of structural problems with nonlinear material behaviour in a model order reduction fra...
International audienceThis paper presents the use of the so called Proper Generalized Decomposition ...