International audienceThe growth of real-time data generation and stored data leads us to be constantly in thinking about the three V's big data challenges: volume, velocity and variety. Existing RDF Stream Processing (RSP) systems have solved the variety lock by defining a common model for producing, transmitting and continuously querying data in RDF model. On the volume and velocity side, the performances of RSP systems need to be improved particularly in terms of joins process between stored and streaming RDF graphs. Stored RDF data are very important in streaming context (related ontologies, summarized RDF data, non-evolutive RDF data or evolve very slowly over time, etc.) but existing RSP systems such as C-SPARQL, CQELS, SPARQL stream ...