We numerically study the crossing symmetry constraints in 4D CFTs, using previously introduced algorithms based on semidefinite programming. We study bounds on OPE coefficients of tensor operators as a function of their scaling dimension and extend previous studies of bounds on OPE coefficients of conserved vector currents to the product groups SO(N)×SO(M). We also analyze the bounds on the OPE coefficients of the conserved vector currents associated with the groups SO(N), SU(N) and SO(N)×SO(M) under the assumption that in the singlet channel no scalar operator has dimension less than four, namely that the CFT has no relevant deformations. This is motivated by applications in the context of composite Higgs models, where the strongly coupled...