International audienceWe present a globally convergent numerical algorithm based on global Carleman estimates to reconstruct the speed of propagation of waves in a bounded domain with Dirichlet boundary conditions from a single measurement of the boundary flux of the solutions in a finite time interval. The global convergence of the proposed algorithm naturally arises from the proof of the Lipschitz stability of the corresponding inverse problem for both sufficiently large observation time and boundary using global Carleman inequalities. The speed of propagation is supposed to be independent of time but varying in space with a trace and normal derivative known at the boundary and belonging to a certain admissible set that limits the speed f...