In this paper, a method for pattern analysis in networks of diffusively coupled nonlinear systems of Lur'e form is presented. We consider a class of nonlinear systems which are globally asymptotically stable in isolation. Interconnecting such systems into a network via diffusive coupling can result in persistent oscillatory behavior, which may lead to pattern formation in the coupled systems. Some of these patterns may coexist and can even all be locally stable, i.e. the network dynamics can be multistable. Multistability makes the application of common analysis methods, such as the direct Lyapunov method, highly involved. We develop a numerically efficient method in order to analyze the oscillatory behavior occurring in such networks. We f...