We present a new method to identify phytoplankton functional types (PFTs) in the Mediterranean Sea from ocean color data (GlobColour data in the present study) and AVHRR sea surface temperature. The principle of the method is constituted by two very fine clustering algorithms, one mapping the relationship between the satellite data and the pigments and the other between the pigments and the PFTs. The clustering algorithms are constituted of two efficient self-organizing maps, which are neural network classifiers. We were able to identify and estimate the percentage of six PFTs: haptophytes, chlorophytes, cryptophytes, Synechococcus, Prochlorococcus, and diatoms. We found that these PFTs present a peculiar variability due to the complex phys...