From neuroscience, brain imaging, and the psychology of memory we are beginning to assemble an integrated theory of the brain sub-systems and pathways that allow the compression, storage and reconstruction of memories for past events and their use in contextualizing the present and reasoning about the future—mental time travel (MTT). Using computational models, embedded in humanoid robots, we are seeking to test the sufficiency of this theoretical account and to evaluate the usefulness of brain-inspired memory systems for social robots. In this contribution, we describe the use of machine learning techniques—Gaussian process latent variable models—to build a multimodal memory system for the iCub humanoid robot and summarise results of the d...