Retinal blood vessel detection and extraction is an essential step in understanding several eye related pathologies. It is the key in automatic screening systems for retinal abnormalities. We present a novel yet simple approach to the detection and segmentation of vasculature from the fundus images of the human retina. For the detection and extraction of blood vessels, the green channel of the image is separated. The green channel is preprocessed for a better contrast by using contrast limited adaptive histogram equalization (CLAHE) and mathematical morphology. On applying bitplane decomposition, bitplane 2 is found to carry important information on the topology of retinal vasculature. A series of morphological operations on bitplane 2 segm...