Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension of a (non-trivial) totally geodesic submanifold of M. The purpose of this note is to determine the index i(M) for all irreducible Riemannian symmetric spaces M of type (II) and (IV).Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Berndt Jürgen
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
AbstractIn [T. Kimura, M.S. Tanaka, Totally geodesic submanifold in compact symmetric spaces of rank...
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension o...
Abstract. Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal cod...
Abstract. Let M be an irreducible Riemannian symmetric space. The index of M is the minimal codimens...
In 1980, Oniˇsˇcik ([23]) introduced the index of a Riemannian symmetricspace as the minimal codimen...
The index of a Riemannian symmetric space is the minimal codimension of a proper totally geodesic su...
AbstractIn [T. Kimura, M.S. Tanaka, Totally geodesic submanifold in compact symmetric spaces of rank...
We introduce a geometric invariant that we call the index of symmetry, which measures how far is a R...
AbstractIn this paper we construct new examples of symmetric non-totally geodesic submanifolds in ir...
We find many examples of compact Riemannian manifolds (M,g) whose closed minimal hypersurfaces satis...
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, F...
We develop a general structure theory for compact homogeneous Riemannian manifolds in relation to th...
Let ${\cal M}$ be a compact locally symmetric space of noncompact type. Let ${\cal N}$ be an immerse...
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
AbstractIn [T. Kimura, M.S. Tanaka, Totally geodesic submanifold in compact symmetric spaces of rank...
Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal codimension o...
Abstract. Let M be an irreducible Riemannian symmetric space. The index i(M) of M is the minimal cod...
Abstract. Let M be an irreducible Riemannian symmetric space. The index of M is the minimal codimens...
In 1980, Oniˇsˇcik ([23]) introduced the index of a Riemannian symmetricspace as the minimal codimen...
The index of a Riemannian symmetric space is the minimal codimension of a proper totally geodesic su...
AbstractIn [T. Kimura, M.S. Tanaka, Totally geodesic submanifold in compact symmetric spaces of rank...
We introduce a geometric invariant that we call the index of symmetry, which measures how far is a R...
AbstractIn this paper we construct new examples of symmetric non-totally geodesic submanifolds in ir...
We find many examples of compact Riemannian manifolds (M,g) whose closed minimal hypersurfaces satis...
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, F...
We develop a general structure theory for compact homogeneous Riemannian manifolds in relation to th...
Let ${\cal M}$ be a compact locally symmetric space of noncompact type. Let ${\cal N}$ be an immerse...
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
summary:The exceptional compact symmetric spaces $G_2$ and $G_2/SO(4)$ admit cohomogeneity one isome...
AbstractIn [T. Kimura, M.S. Tanaka, Totally geodesic submanifold in compact symmetric spaces of rank...