Poly-N-isopropylacrylamide (PNIPAM) gels grafted to redox-active metal monomers undergo sudden expansion-contraction activity in response to change in environmental conditions, such as temperature, pH, ion concentration, and oxidation states of the metal. The relevance of these conditions to biological systems has garnered attention for PNIPAM-based polymer as potential biomedical materials. Candidate transition metal monomers containing ruthenium and nickel cores were designed and synthesized for copolymerization with NIPAM and cross-linker methylene-bis-acrylamide in order to attain metallopolymer microspheres with a high percentage of metal incorporation. Synthesis of 4-vinyl-4\u27-methyl-2,2\u27-bipyridine (vmbpy) was optimized from lit...