We paralinearize the Muskat equation to extract an explicit parabolic evolution equation having a compact form. This result is applied to give a simple proof of the local well-posedness of the Cauchy problem for rough initial data, in homogeneous Sobolev spaces $\dot{H}^1(\mathbb{R})\cap \dot{H}^s(\mathbb{R})$ with $s>3/2$. This paper is essentially self-contained and does not rely on general results from paradifferential calculus
International audienceWe study local and global Cauchy problems for the Semi-linear Parabolic Equati...
We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with e...
En el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios ...
In this paper we establish the well-posedness of the Muskat problem with surface tension and equal v...
summary:We survey recent work on local well-posedness results for parabolic equations and systems wi...
We study the two-dimensional Muskat problem in a horizontally periodic setting and for fluids with a...
En este trabajo tratamos el buen planteamiento en los espacios de Sobolev Hs(R2) del problema de val...
Abstract. In this paper we first give a unified method by introducing the concept of admissible trip...
We study local and global Cauchy problems for the Semilinear Parabolic Equations ?tU - ?U = P(D) F(U...
We prove local in time well-posedness in Sobolev spaces of the Cauchy problem for semi-linear p-evol...
In this work, we study questions related to the local well-posedness for the initial value problem a...
We study the dynamics of the interface between two incompressible fluids in a two-dimension...
In the hyperbolic Cauchy problem, the well-posedness in Sobolev spaces is strictly related to the mo...
This article concerns the basic understanding of parabolic final value problems, and a large class o...
Consideramos el problema de Cauchy asociado al problema de valor inicial [Fórmula] donde a∈R y γ∈R. ...
International audienceWe study local and global Cauchy problems for the Semi-linear Parabolic Equati...
We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with e...
En el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios ...
In this paper we establish the well-posedness of the Muskat problem with surface tension and equal v...
summary:We survey recent work on local well-posedness results for parabolic equations and systems wi...
We study the two-dimensional Muskat problem in a horizontally periodic setting and for fluids with a...
En este trabajo tratamos el buen planteamiento en los espacios de Sobolev Hs(R2) del problema de val...
Abstract. In this paper we first give a unified method by introducing the concept of admissible trip...
We study local and global Cauchy problems for the Semilinear Parabolic Equations ?tU - ?U = P(D) F(U...
We prove local in time well-posedness in Sobolev spaces of the Cauchy problem for semi-linear p-evol...
In this work, we study questions related to the local well-posedness for the initial value problem a...
We study the dynamics of the interface between two incompressible fluids in a two-dimension...
In the hyperbolic Cauchy problem, the well-posedness in Sobolev spaces is strictly related to the mo...
This article concerns the basic understanding of parabolic final value problems, and a large class o...
Consideramos el problema de Cauchy asociado al problema de valor inicial [Fórmula] donde a∈R y γ∈R. ...
International audienceWe study local and global Cauchy problems for the Semi-linear Parabolic Equati...
We consider the Muskat problem describing the motion of two unbounded immiscible fluid layers with e...
En el presente trabajo, se tratan cuestiones tales como el buen planteamiento local en los espacios ...