International audienceDataflow Models of Computation (MoCs) have proven efficient means for modeling computational aspects of Cyber-Physical System (CPS). Over the years, diverse MoCs have been proposed that offer trade-offs between expressivity, conciseness, predictability, and reconfigurability. While being efficient for modeling coarse grain data and task parallelism, state-of-the-art dataflow MoCs suffer from a lack of semantics to benefit from the lower grained parallelism offered by hierarchically modeled nested loops. In this paper 1 , a meta-model called State-Aware Dataflow (SAD) is proposed that enhances a dataflow MoC, introducing new semantics to take advantage of such nested loop parallelism. SAD extends the semantics of the ta...