The distribution of bursting lengths of neuron spikes, in a two-component integrate-and-fire model, is investigated. The stochastic process underlying this model corresponds to a generalisation of the Brownian motion underlying Levy's arcsine law of residence times. The generalisation involves the inclusion of a quadratic potential of strength γ and γ = 0 corresponds to Levy's original problem. In the generalised problem, the distribution of the residence times, T, over a time window t, is related to spectral properties of a complex, non-relativistic Hamiltonian of quantum mechanics. The distribution of T depends on γt and varies from a U-shaped distribution for small γt to a bell-shaped distribution for large γt. The first two moments of T...