International audienceThis paper investigates the impact of rapid small-scale water vapor fluctuations on GPS height determination. Water vapor measurements from a Raman lidar are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four short observing sessions (6 h) during the VAPIC experiment (15 May–15 June 2004). The retrieval of wet delays from our Raman lidar is shown to agree well with radiosonde retrievals (bias and standard deviation (SD) were smaller than 1 and 2.8 mm, respectively) and microwave radiometers (from two different instruments, bias was 6.0/−6.6 mm and SD 1.3/3.8 mm). A standard GPS data analysis is shown to fail in accurately repr...