International audienceWe study the average complexity of certain numerical algorithms when adapted to solving systems of multivariate polynomial equations whose coefficients belong to some fixed proper real subspace of the space of systems with complex coefficients. A particular motivation is the study of the case of systems of polynomial equations with real coefficients. Along these pages, we accept methods that compute either real or complex solutions of these input systems. This study leads to interesting problems in Integral Geometry: the question of giving estimates on the average of the normalized condition number along great circles that belong to a Schubert subvariety of the Grassmannian of great circles on a sphere. We prove that ...