A fundamental theme in classical Fourier analysis relates smoothness properties of functions to the growth and/or integrability of their Fourier transform. By using a suitable class of LpLp-multipliers, a rather general inequality controlling the size of Fourier transforms for large and small argument is obtained. As consequences, quantitative Riemann “Lebesgue estimates are obtained and an integrability result for the Fourier transform is developed extending ideas used by Titchmarsh in the one dimensional setting
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
We obtain new conditions on periodic integrable functions so that their transformed Fourier series b...
AbstractWe obtain new inequalities for the Fourier transform, both on Euclidean space, and on non-co...
An explicit example of such a function is provided. It is tacitly understood that the power of the L...
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis...
textWe prove several inequalities involving the Fourier transform of functions which are compactly s...
textWe prove several inequalities involving the Fourier transform of functions which are compactly s...
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[super...
AbstractWe prove two-sided inequalities between the integral moduli of smoothness of a function on R...
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis...
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[super...
AbstractIn a recent paper Bray and Pinsky [1] estimated the growth of f̂(ξ), the Fourier transform o...
We prove new Pitt inequalities for the Fourier transforms with radial and non-radial weights using w...
AbstractFirstly, we study the uniform convergence of cosine and sine Fourier transforms. Secondly, w...
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
We obtain new conditions on periodic integrable functions so that their transformed Fourier series b...
AbstractWe obtain new inequalities for the Fourier transform, both on Euclidean space, and on non-co...
An explicit example of such a function is provided. It is tacitly understood that the power of the L...
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis...
textWe prove several inequalities involving the Fourier transform of functions which are compactly s...
textWe prove several inequalities involving the Fourier transform of functions which are compactly s...
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[super...
AbstractWe prove two-sided inequalities between the integral moduli of smoothness of a function on R...
The main goal of this text is to present the theoretical foundation of the field of Fourier analysis...
We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[super...
AbstractIn a recent paper Bray and Pinsky [1] estimated the growth of f̂(ξ), the Fourier transform o...
We prove new Pitt inequalities for the Fourier transforms with radial and non-radial weights using w...
AbstractFirstly, we study the uniform convergence of cosine and sine Fourier transforms. Secondly, w...
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
El propòsit d'aquesta tesi és el d'estudiar les propietats d'integrabilitat i convergència de sèries...
We obtain new conditions on periodic integrable functions so that their transformed Fourier series b...