To design embedded computer vision systems, two axes can be considered. The first focuses on designing new, more powerful, digital devices that can efficiently implement complex algorithms. The second targets the development of new, lightweight computer vision algorithms that can be effectively implemented on digital embedded systems. In this work, we favor the second axis by using connectionist models. In this context, we focus on two models of artificial neural networks: cluster-based networks and convolutional networks. The first model we use, i.e. cluster-based network, was never been used to perform computer vision tasks before. However, it seemed to be a good candidate to design embedded systems, especially through dedicated hardware ...
Depuis le début des années 2010 la recherche en apprentissage automatique a orienté son attention ve...
From image recognition to automated driving, machine learning nowadays is all around us and impacts ...
Avec un volume toujours plus grand d'images accessibles numériquement, établir des connexions pour s...
To design embedded computer vision systems, two axes can be considered. The first focuses on designi...
Pour concevoir des systèmes de vision embarquée, deux axes peuvent être considérés. Le premier se fo...
Les réseaux de neurones à convolution sont des algorithmes d’apprentissage flexibles qui tirent effi...
The interest of neural networks in the image and signal processing field isaddressed. This work has ...
La prolifération des capteurs d'images dans de nombreux appareils électroniques, et l'évolution des ...
Connectionist modeis, commonly referred to as neural networks, are computing models in which large n...
Computer vision and machine learning are two hot research topics that have witnessed major breakthro...
Being one of the cutting-edge solutions in the computer vision field, Convolutional neural networks ...
La prolifération des capteurs d'images dans de nombreux appareils électroniques, et l'évolution des ...
La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibil...
Littmann E, Meyering A, Ritter H. Cascaded and Parallel Neural Network Architectures for Machine Vis...
Multilayer neural networks were first proposed more than three decades ago, and various architecture...
Depuis le début des années 2010 la recherche en apprentissage automatique a orienté son attention ve...
From image recognition to automated driving, machine learning nowadays is all around us and impacts ...
Avec un volume toujours plus grand d'images accessibles numériquement, établir des connexions pour s...
To design embedded computer vision systems, two axes can be considered. The first focuses on designi...
Pour concevoir des systèmes de vision embarquée, deux axes peuvent être considérés. Le premier se fo...
Les réseaux de neurones à convolution sont des algorithmes d’apprentissage flexibles qui tirent effi...
The interest of neural networks in the image and signal processing field isaddressed. This work has ...
La prolifération des capteurs d'images dans de nombreux appareils électroniques, et l'évolution des ...
Connectionist modeis, commonly referred to as neural networks, are computing models in which large n...
Computer vision and machine learning are two hot research topics that have witnessed major breakthro...
Being one of the cutting-edge solutions in the computer vision field, Convolutional neural networks ...
La prolifération des capteurs d'images dans de nombreux appareils électroniques, et l'évolution des ...
La récente mise à disposition de grandes bases de données de modèles 3D permet de nouvelles possibil...
Littmann E, Meyering A, Ritter H. Cascaded and Parallel Neural Network Architectures for Machine Vis...
Multilayer neural networks were first proposed more than three decades ago, and various architecture...
Depuis le début des années 2010 la recherche en apprentissage automatique a orienté son attention ve...
From image recognition to automated driving, machine learning nowadays is all around us and impacts ...
Avec un volume toujours plus grand d'images accessibles numériquement, établir des connexions pour s...