In this research, we develop a neuromorphic system to study neural signaling at the level of first order tactile afferents which are slowly adapting type I (SA1) and rapidly adapting type I (RA1) mechanoreceptors. Considering, the linearized Izhikevich model, two digital circuits are developed for both afferents and are executed on the field programmable gate array (FPGA). After implementation of the digital circuits, we investigate how much information is encoded by this hardware-based neuromorphic system. Indeed, the artificial spiking sequences are evoked by applying different force profiles to the sensor connected to the FPGA. Next, the obtained neural responses are classified based on the two fundamental neural coding for brain informa...