This study is the latest increment of an ongoing research effort at the University of Tennessee Space Institute with the goal of accomplishing a greater understanding of cavity instabilities and or making use of the instabilities to amplify their effects on the flows. An experimental procedure was designed to examine the unsteady pressure pulses that occur when an incompressible fluid (water) flows through an axisymmetric cavity. The length to depth ratios (L/D) examined ranged from about 0.69 to about 6.2, and the average flow Reynolds numbers ranged from 0 to 1.2 million. Results show that large amplitude oscillations are generated in the cavity for specific length to depth ratios for a given flow rate. The peak amplitude of the oscill...