We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant (Formula presented.) such that whenever (Formula presented.) are n-element subsets of (Formula presented.), we can find a point (Formula presented.) and subsets (Formula presented.) for every i∈[d+1], each of size at least cdn, such that p belongs to all rainbowd-simplices determined by (Formula presented.) simplices with one vertex in each Yi. We show a super-exponentially decreasing upper bound (Formula presented.). The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with (Formula presented.), which is a lower bound doubly exponentially decreasing in d (up to some polyno...