HMAC and its variant NMAC are the most popular approaches to deriving a MAC (and more generally, a PRF) from a cryptographic hash function. Despite nearly two decades of research, their exact security still remains far from understood in many different contexts. Indeed, recent works have re-surfaced interest for {\em generic} attacks, i.e., attacks that treat the compression function of the underlying hash function as a black box. Generic security can be proved in a model where the underlying compression function is modeled as a random function -- yet, to date, the question of proving tight, non-trivial bounds on the generic security of HMAC/NMAC even as a PRF remains a challenging open question. In this paper, we ask the question of whet...