Propagation of a lava flow is governed by slope topography, magma rheology, heat exchange with the atmosphere and the underlying terrain, and the rate of the eruption. Highly viscous crust is formed due to cooling and solidification of the uppermost layer of the flow. We consider here two numerical model problems for lava flows, both based on the fundamental physics of a hot fluid flow: a model problem, where thermal conditions (e.g. temperature and heat flow) at the lava surface are unknown a priori (a direct model problem), and a model problem, where the lava surface conditions are known and determined from observations(an inverse model problem). In both models, the lava viscosity depends on temperature and the volume fraction of crystals...