Buried wurtzite structures composed by stacking faults of the {111} planes in zinc-blende and {112} planes in chalcopyrite structures can result in barriers for charge carrier transport. A precise understanding of stacking fault annihilation mechanisms is therefore crucial for the development of effective deposition processes. During co-evaporation of Cu(In,Ga)Se2—a photovoltaic absorber material showing record efficiencies of up to 22.9% for thin film solar cells—a reduction of stacking faults occurs at the transition from a Cu-poor to a Cu-rich film composition, parallel to grain growth, which is suggesting that the two phenomena are coupled. Here, we show by in situ synchrotron X-ray diffraction during annealing of Cu-poor CuInSe2 thin f...