When the coefficients of an elliptic problem have jumps of several orders of magnitude across an embedded interface, many iterative solvers exhibit deteriorated convergence properties or a loss of efficiency and it is difficult to achieve high solution accuracies in the whole domain. In this paper we present an asymptotic solution approach for the elliptic problem ∇⋅(β(x)∇u(x))=f(x) on a domain Ω=Ω+∪Ω− with piecewise constant coefficients β+, β− with β+≫β− and prescribed jump conditions at an embedded interface Γ separating the domains Ω+ and Ω−. We are in particular focusing on a problem related to fluid mechanics, namely incompressible two-phase flow with a large density ratio across the phase boundary, where an accurate solution of the v...
We present a general framework for accurately evaluating finite difference operators in the presence...
We present a finite volume method for the solution of the two-dimensional elliptic equation @?.(@b(x...
We consider three singularly perturbed convection-diffusion problems defined in three-dimensional d...
When the coefficients of an elliptic problem have jumps of several orders of magnitude across an emb...
AbstractThe paper deals with an elliptic problem with coefficients discontinuous along a certain sur...
This paper is devoted to developing a complete algorithm for solving a class of 3D elliptic equation...
We develop finite difference methods for elliptic equations of the form r \Delta (fi(x)ru(x)) + (x)...
A new approach is given to analyse the regularity of solutions near singular points for the interfac...
We consider a family of positive solutions to the system of k components −Δui,β=f(x,ui,β)−βui,β∑j≠ia...
Abstract. Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such ...
In this paper we present a one dimensional second order accurate method to solve Elliptic equations ...
Abstract. Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients o...
We present a simple numerical algorithm for solving elliptic equations where the diffusion coefficie...
AbstractThe Immersed Interface Method proposed by LeVeque and Li [1] is extended to three-dimensiona...
AbstractWe consider three singularly perturbed convection–diffusion problems defined in three-dimens...
We present a general framework for accurately evaluating finite difference operators in the presence...
We present a finite volume method for the solution of the two-dimensional elliptic equation @?.(@b(x...
We consider three singularly perturbed convection-diffusion problems defined in three-dimensional d...
When the coefficients of an elliptic problem have jumps of several orders of magnitude across an emb...
AbstractThe paper deals with an elliptic problem with coefficients discontinuous along a certain sur...
This paper is devoted to developing a complete algorithm for solving a class of 3D elliptic equation...
We develop finite difference methods for elliptic equations of the form r \Delta (fi(x)ru(x)) + (x)...
A new approach is given to analyse the regularity of solutions near singular points for the interfac...
We consider a family of positive solutions to the system of k components −Δui,β=f(x,ui,β)−βui,β∑j≠ia...
Abstract. Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such ...
In this paper we present a one dimensional second order accurate method to solve Elliptic equations ...
Abstract. Elliptic partial differential equations (PDEs) with discontinuous diffusion coefficients o...
We present a simple numerical algorithm for solving elliptic equations where the diffusion coefficie...
AbstractThe Immersed Interface Method proposed by LeVeque and Li [1] is extended to three-dimensiona...
AbstractWe consider three singularly perturbed convection–diffusion problems defined in three-dimens...
We present a general framework for accurately evaluating finite difference operators in the presence...
We present a finite volume method for the solution of the two-dimensional elliptic equation @?.(@b(x...
We consider three singularly perturbed convection-diffusion problems defined in three-dimensional d...