We present models, methods, implementations and experiments with a system enabling personalized web search for many users with different preferences. The system consists of a web information extraction part, a text search engine, a middleware supporting top-k answers and a user interface for querying and evaluation of search results. We integrate several tools (implementing our models and methods) into one framework connecting user with the web. The model represents user preferences with fuzzy sets and fuzzy logic, here understood as a scoring describing user satisfaction. This model can be acquired with explicit or implicit methods. Model-theoretic semantics is based on fuzzy description logic f-EL. User preference learning is based on our...