We prove that for all integers $kgeq tgeq 0$ and $dgeq 2k$, every graph $G$ with treewidth at most $k$ has a `large' induced subgraph $H$, where $H$ has treewidth at most $t$ and every vertex in $H$ has degree at most $d$ in $G$. The order of $H$ depends on $t$, $k$, $d$, and the order of $G$. With $t=k$, we obtain large sets of bounded degree vertices. With $t=0$, we obtain large independent sets of bounded degree. In both these cases, our bounds on the order of $H$ are tight. For bounded degree independent sets in trees, we characterise the extremal graphs. Finally, we prove that an interval graph with maximum clique size $k$ has a maximum independent set in which every vertex has degree at most $2k$
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
AbstractFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G th...
An independent set of a graph is a set of vertices without edges between them. Every planar graph ha...
We prove that for all 0 ≤ t ≤ k and d ≥ 2k, every graph G with treewidth at most k has a 'large' ind...
We prove that for all integers $kgeq tgeq 0$ and $dgeq 2k$, every graph $G$ with treewidth at most $...
ABSTRACT. We prove that for all integers k ≥ t ≥ 0 and d ≥ 2k, every graph G with treewidth at most ...
In this paper, we develop a new technique to study the treewidth of graphs with bounded degree. We s...
AbstractLet α∗ denote the maximum number of independent vertices all of which have the same degree. ...
A "tree-partition" of a graph $G$ is a partition of $V(G)$ such that identifying the vertices in eac...
By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number a...
Graphs with large minimum degree containing no copy of a clique on r vertices (Kr) must contain rela...
In 2020, we initiated a systematic study of graph classes in which the treewidth can only be large d...
A hole in a graph $G$ is an induced cycle of length at least four, and an even hole is a hole of eve...
AbstractWe establish relations between the bandwidth and the treewidth of bounded degree graphs G, a...
AbstractGraphs with n + k vertices in which every set of n + j vertices induce a subgraph of maximum...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
AbstractFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G th...
An independent set of a graph is a set of vertices without edges between them. Every planar graph ha...
We prove that for all 0 ≤ t ≤ k and d ≥ 2k, every graph G with treewidth at most k has a 'large' ind...
We prove that for all integers $kgeq tgeq 0$ and $dgeq 2k$, every graph $G$ with treewidth at most $...
ABSTRACT. We prove that for all integers k ≥ t ≥ 0 and d ≥ 2k, every graph G with treewidth at most ...
In this paper, we develop a new technique to study the treewidth of graphs with bounded degree. We s...
AbstractLet α∗ denote the maximum number of independent vertices all of which have the same degree. ...
A "tree-partition" of a graph $G$ is a partition of $V(G)$ such that identifying the vertices in eac...
By Brook\u27s Theorem, every n-vertex graph of maximum degree at most Delta >= 3 and clique number a...
Graphs with large minimum degree containing no copy of a clique on r vertices (Kr) must contain rela...
In 2020, we initiated a systematic study of graph classes in which the treewidth can only be large d...
A hole in a graph $G$ is an induced cycle of length at least four, and an even hole is a hole of eve...
AbstractWe establish relations between the bandwidth and the treewidth of bounded degree graphs G, a...
AbstractGraphs with n + k vertices in which every set of n + j vertices induce a subgraph of maximum...
Galvin showed that for all fixed δ and sufficiently large n, the n-vertex graph with minimum degree ...
AbstractFor a graph G, let t(G) denote the maximum number of vertices in an induced subgraph of G th...
An independent set of a graph is a set of vertices without edges between them. Every planar graph ha...