This thesis describes the development of the SmartGraph, an AI enabled graph database. The need for such a system has been independently recognized in the isolated fields of graph databases, graph computing, and computational graph deep learning systems, such as TensorFlow. Though prior works have investigated some relationships between these fields, we believe that the SmartGraph is the first system designed from conception to incorporate the most significant and useful characteristics of each. Examples include the ability to store graph structured data, run analytics natively on this data, and run gradient descent algorithms. It is the synergistic aspects of combining these fields that provide the most novel results presented in this diss...