A classic algorithm for the traveling salesman problem (TSP) on cubic graphs consists of finding a double spanning tree on the contracted graph of a cycle cover, where a cycle cover is defined as the set of edges in the complement of a perfect matching. If a cubic graph G on n vertices has a cycle cover containing k cycles, this results in a TSP tour of size $n+2k$. Since we are interested in short TSP tours, we would like to find cycle covers that have small size, i.e., having few connected components. Moemke and Svensson showed that a bridgeless, cubic graph contains a cycle cover consisting of at most n/6 cycles. Here we show how to use a large cycle cover to obtain a small cycle cover. In particular, if G is a bipartite, cubic grap...