We consider topological orbifolds as proper \'etale groupoids, i.e., topological groupoids with a proper diagonal and \'etale structure maps. We call these orbigroupoids. To describe maps between these groupoids and 2-cells between them, we will use the bicategory of fractions of the 2-category of orbigroupoids and continuous functors with respect to a subclass of the Morita equivalences which is gives a bicategory of fractions that is equivalent to the usual one and renders mapping groupoids that are small. We will present several nice results about the equivalence relation on the 2-cell diagrams in this bicategory that then enable us to obtain a very explicit description of the topological groupoid $\mbox{Map}\,(G,H)$ encoding the new ...