In this thesis we present a reduction theory for the symmetrizable split maximal Kac-Moody groups. However there are many technical difficulties before one can even formulate a reduction theorem. Combining the two main approaches commonly seen in the literature we define a group, first over any field of characteristic zero and then on any commutative ring of characteristic zero. Then we prove a number of structural properties of the group such as representation in the highest weight modules, existence of a Tits system and an Iwasawa decomposition over ℝ and ℂ. Finally we arrive at reduction theory which can only hold for part of the group.Science, Faculty ofMathematics, Department ofGraduat
International audienceIn this paper, we prove some finiteness results about split Kac-Moody groups o...
International audienceRecently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-...
We introduce the notion of a generalized spin representation of the maximal compact subalgebra $\mat...
In this article we characterize the fields over which connected split semisimple algebraic groups an...
In this article we characterize the fields over which connected split semisimple alge-braic groups a...
Kac–Moody groups may be viewed as infinite-dimensional analogues of semi-simple Lie groups, or else ...
Zerfallende Kac-Moody-Gruppen wurden 1987 von Jacques Tits definiert, Bertrand Remy gab 1999 eine De...
Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de f...
Let G be a reductive algebraic group dened over an algebraically closed eld k. We x a Borel subgroup...
RésuméSoit g une algèbre de Kac-Moody symétrisable. Dans [KW1], Kac et Wakimoto ont démontré une for...
International audienceWe study the crystal structure on categories of graded modules over algebras w...
International audienceLet G be a split Kac-Moody group over a non-archimedean local field. We define...
For a split Kac-Moody group G over an ultrametric field K, S. Gaussent and the author defined an ord...
Goal of the present work is the study of involutory automorphisms and their centralizers of reductiv...
International audienceFor an almost split Kac-Moody group G over a local non-archimedean field, the ...
International audienceIn this paper, we prove some finiteness results about split Kac-Moody groups o...
International audienceRecently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-...
We introduce the notion of a generalized spin representation of the maximal compact subalgebra $\mat...
In this article we characterize the fields over which connected split semisimple algebraic groups an...
In this article we characterize the fields over which connected split semisimple alge-braic groups a...
Kac–Moody groups may be viewed as infinite-dimensional analogues of semi-simple Lie groups, or else ...
Zerfallende Kac-Moody-Gruppen wurden 1987 von Jacques Tits definiert, Bertrand Remy gab 1999 eine De...
Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de f...
Let G be a reductive algebraic group dened over an algebraically closed eld k. We x a Borel subgroup...
RésuméSoit g une algèbre de Kac-Moody symétrisable. Dans [KW1], Kac et Wakimoto ont démontré une for...
International audienceWe study the crystal structure on categories of graded modules over algebras w...
International audienceLet G be a split Kac-Moody group over a non-archimedean local field. We define...
For a split Kac-Moody group G over an ultrametric field K, S. Gaussent and the author defined an ord...
Goal of the present work is the study of involutory automorphisms and their centralizers of reductiv...
International audienceFor an almost split Kac-Moody group G over a local non-archimedean field, the ...
International audienceIn this paper, we prove some finiteness results about split Kac-Moody groups o...
International audienceRecently, Iwahori-Hecke algebras were associated to Kac-Moody groups over non-...
We introduce the notion of a generalized spin representation of the maximal compact subalgebra $\mat...