This thesis examines several problems related to singly-constrained Monotropic Network Flow Problems. In the first part, a linear time algorithm that reduces the solution of a monotropic network flow problem with an additional linear equality constraint to the solution of lower dimensional subproblems is presented. Of the subproblems, at most one is a singly-constrained monotropic network flow problem while the others are unconstrained. If none of the subproblems is constrained, the algorithm provides a linear-time transformation of constrained to unconstrained monotropic network flow problems. Extensions to nonlinear and inequality constraints are given. In the second part the qualitative theory of sensitivity analysis for Unconstrained M...