We investigated the diurnal variations of atmospheric carbonyl sulphide (COS) during 2011 at Gif-sur-Yvette, a suburban atmospheric measurement site in France. These data were collected semi-continuously in parallel with hydrogen (H2), carbon monoxide (CO) and 222Radon (222Rn) measurements. Fluxes and deposition velocities were calculated for nocturnal situations of low boundary layer height using the Radon-Tracer Method. Contrary to CO and H2, the diurnal cycles of COS are not impacted by emissions from nearby automobile traffic. In the absence of local anthropogenic combustion sources, COS and H2 mole fractions generally show similar temporal variations with night-time depletion coinciding with 222Rn accumulation during stable nocturnal c...