We prove a quantitative equidistribution result for linear random walks on the torus, similar to a theorem of Bourgain, Furman, Lindenstrauss and Mozes, but without any proximality assumption. An application is given to expansion in simple groups, modulo arbitrary integers
Given n vectors {i} ∈ [0, 1)d, consider a random walk on the d-dimensional torus d = ℝd/ℤd generated...
We give Harnack inequalities for the hitting distributions of a large family of sym-metric random wa...
This thesis consists of an introduction, a summary and 7 papers. The papers are devoted to problems ...
We study linear random walks on the torus and show a quantitative equidistribution statement, under ...
Let $\rho$ be a probability measure on $\mathrm{SL}_d(\mathbb{Z})$ and consider the random walk defi...
We consider a random walk Sk with i.i.d. steps on a compact group equipped with a bi-invariant metri...
Abstract.We study the equidistribution on spheres of the n-step tran-sition probabilities of random ...
The goal of these notes is to give an introduction to random walks and limit theorems on Lie groups,...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identi...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
Given n vectors {i} ∈ [0, 1)d, consider a random walk on the d-dimensional torus d = ℝd/ℤd generated...
We give Harnack inequalities for the hitting distributions of a large family of sym-metric random wa...
This thesis consists of an introduction, a summary and 7 papers. The papers are devoted to problems ...
We study linear random walks on the torus and show a quantitative equidistribution statement, under ...
Let $\rho$ be a probability measure on $\mathrm{SL}_d(\mathbb{Z})$ and consider the random walk defi...
We consider a random walk Sk with i.i.d. steps on a compact group equipped with a bi-invariant metri...
Abstract.We study the equidistribution on spheres of the n-step tran-sition probabilities of random ...
The goal of these notes is to give an introduction to random walks and limit theorems on Lie groups,...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afi...
The classical theory of Random Walks describes the asymptotic behavior of sums of independent identi...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
International audienceIn operator algebra, the linearization trick is a technique that reduces the s...
Given n vectors {i} ∈ [0, 1)d, consider a random walk on the d-dimensional torus d = ℝd/ℤd generated...
We give Harnack inequalities for the hitting distributions of a large family of sym-metric random wa...
This thesis consists of an introduction, a summary and 7 papers. The papers are devoted to problems ...