Shape memory materials are featured by their ability to recover their original shapes when a particular stimulus, such as heat, light, magnetic field, even moisture/water, etc. is applied. However, it is not an easy task for non-professionals to synthesize a shape memory material which can meet all the requirements of a particular application. Even for professionals, like materials researchers, it could involve tedious trial and error procedures. In this paper, the concept of water-responsive shape memory hybrid is proposed and the advantages are demonstrated by two examples. The hybrid concept is versatile and can be easily accessed by those even without much polymer/chemistry background. Moreover, the performance of such hybrids can be we...