Models of instabilities in porous media usually assume that the capillary pressure (the difference of pressure between the nonwetting and the wetting phase) depends on the radii of the macroscopic curvature of the two-phase front. However, this definition is not taken into account for modeling stable immiscible displacements in porous media whenever the heterogeneity of the porous medium may lead to high macroscopic curvature of the front. Before trying to solve flow equations in porous media under unstable conditions, a more accurate and complete set of equations for immiscible two-phase flow in porous media is required. Space averaging of microscopic equations valid at the pore level is used to define variables and equations that link the...