The theorem on a normal limit distribution of the normalized number of false solutions of a beforehand consistent system of nonlinear random equations over the field GF(2) is proved. The results with the additional condition on the number of nonzero components both false solutions and true solution of the solutions are obtained
In this paper we consider a nonlinear non-autonomous system ordinary differential equations (ODE) an...
AbstractLet (Xn)nϵN be a sequence of real, independent, not necessarily identically distributed rand...
summary:We study the limiting distribution of the maximum value of a stationary bivariate real rando...
We consider the binomial random set model $[n]_p$ where each element in $\{1,\dots,n\}$ is chosen in...
We consider a two-color, randomly reinforced urn with equal reinforcement distributions and we chara...
The limit theorems for polylinear forms are obtained. Conditions are found under which the distribut...
We estimate a lower bound of the number of real roots of a random algebraic equation whose random co...
Fbr statistical applications it is necessary to investigate the limit distributions of the functions...
We establish that the Birnbaum-Saunders distribution is the equilibrium mixture of the inverse Gauss...
This article addresses the problem of defining a general scaling setting in which Gaussian and non-G...
AbstractAccording to a general program for dealing with differential equations in quantum field theo...
AbstractGiven a dynamical system (Ω, F, P, θ(t)) and a random differential equation ẋ = ƒ(θtω, x) in...
We consider the random system of 2-linear equations over the finite field GF (2) whose left hand sid...
AbstractThe question of existence of random solutions of nonlinear random operator equations involvi...
In this paper the limiting distributions for sequences of central terms under power nonrandom normal...
In this paper we consider a nonlinear non-autonomous system ordinary differential equations (ODE) an...
AbstractLet (Xn)nϵN be a sequence of real, independent, not necessarily identically distributed rand...
summary:We study the limiting distribution of the maximum value of a stationary bivariate real rando...
We consider the binomial random set model $[n]_p$ where each element in $\{1,\dots,n\}$ is chosen in...
We consider a two-color, randomly reinforced urn with equal reinforcement distributions and we chara...
The limit theorems for polylinear forms are obtained. Conditions are found under which the distribut...
We estimate a lower bound of the number of real roots of a random algebraic equation whose random co...
Fbr statistical applications it is necessary to investigate the limit distributions of the functions...
We establish that the Birnbaum-Saunders distribution is the equilibrium mixture of the inverse Gauss...
This article addresses the problem of defining a general scaling setting in which Gaussian and non-G...
AbstractAccording to a general program for dealing with differential equations in quantum field theo...
AbstractGiven a dynamical system (Ω, F, P, θ(t)) and a random differential equation ẋ = ƒ(θtω, x) in...
We consider the random system of 2-linear equations over the finite field GF (2) whose left hand sid...
AbstractThe question of existence of random solutions of nonlinear random operator equations involvi...
In this paper the limiting distributions for sequences of central terms under power nonrandom normal...
In this paper we consider a nonlinear non-autonomous system ordinary differential equations (ODE) an...
AbstractLet (Xn)nϵN be a sequence of real, independent, not necessarily identically distributed rand...
summary:We study the limiting distribution of the maximum value of a stationary bivariate real rando...