We propose Gaussian processes (GPs) as a novel nonlinear receiver for digital communication systems. The GPs framework can be used to solve both classification (GPC) and regression (GPR) problems. The minimum mean squared error solution is the expectation of the transmitted symbol given the information at the receiver, which is a nonlinear function of the received symbols for discrete inputs. GPR can be presented as a nonlinear MMSE estimator and thus capable of achieving optimal performance from MMSE viewpoint. Also, the design of digital communication receivers can be viewed as a detection problem, for which GPC is specially suited as it assigns posterior probabilities to each transmitted symbol. We explore the suitability of GPs as nonli...