In this paper we give a birational model for the theta divisor of the intermediate Jacobian of a generic cubic threefold X . We use the standard realization of X as a conic bundle and a 4−dimensional family of plane quartics which are totally tangent to the discriminant quintic curve of such a conic bundle structure. The additional data of an even theta characteristic on the curves in the family gives us a model for the theta divisor.<br /
Let k k be a field of characteristic zero containing a primitive fifth root of unity. Let X/k X/k be...
International audienceWe adapt for algebraically closed fields k of characteristic greater than 2 tw...
This publication is with permission of the rights owner (Cambridge University Press) freely accessib...
In this paper we give a birational model for the theta divisor of the intermediate Jacobian of a g...
In this thesis we describe intermediate Jacobians of threefolds obtained from singular cubic threefo...
Recently A.Verra proved that the existence of two conic bundle structures (c.b.s.) on the bidegree (...
A section K on a genus g canonical curve C is identified as the key tool to prove new results on the...
A common generalization a(q, xi, z) of Hirschhorn-Garvan-Bonvein cubic analogues a(q, z), b(q, z), a...
Abstract. Cubic threefolds are classical in Algebraic Geometry, the geometry of the theta divisor of...
Let C be a non-hyperelliptic curve of genus g ≥ 5 over C, and let (J(C),Θ) be its principally polari...
Abstract. Let SUC(r) be the moduli space of vector bundles of rank r and trivial determinant on a cu...
Results due to Druel and Beauville show that the blowup of the intermediate Jacobian of a smooth cub...
We study the second fundamental form of the Siegel metric in $\mathcal A_5$restricted to the locus o...
International audienceAn arithmetic method of proving the irrationality of smooth projective 3-folds...
In [Q. Ren, S. Sam, G. Schrader and B. Sturmfels, The universal Kummer threefold, Experiment Math.22...
Let k k be a field of characteristic zero containing a primitive fifth root of unity. Let X/k X/k be...
International audienceWe adapt for algebraically closed fields k of characteristic greater than 2 tw...
This publication is with permission of the rights owner (Cambridge University Press) freely accessib...
In this paper we give a birational model for the theta divisor of the intermediate Jacobian of a g...
In this thesis we describe intermediate Jacobians of threefolds obtained from singular cubic threefo...
Recently A.Verra proved that the existence of two conic bundle structures (c.b.s.) on the bidegree (...
A section K on a genus g canonical curve C is identified as the key tool to prove new results on the...
A common generalization a(q, xi, z) of Hirschhorn-Garvan-Bonvein cubic analogues a(q, z), b(q, z), a...
Abstract. Cubic threefolds are classical in Algebraic Geometry, the geometry of the theta divisor of...
Let C be a non-hyperelliptic curve of genus g ≥ 5 over C, and let (J(C),Θ) be its principally polari...
Abstract. Let SUC(r) be the moduli space of vector bundles of rank r and trivial determinant on a cu...
Results due to Druel and Beauville show that the blowup of the intermediate Jacobian of a smooth cub...
We study the second fundamental form of the Siegel metric in $\mathcal A_5$restricted to the locus o...
International audienceAn arithmetic method of proving the irrationality of smooth projective 3-folds...
In [Q. Ren, S. Sam, G. Schrader and B. Sturmfels, The universal Kummer threefold, Experiment Math.22...
Let k k be a field of characteristic zero containing a primitive fifth root of unity. Let X/k X/k be...
International audienceWe adapt for algebraically closed fields k of characteristic greater than 2 tw...
This publication is with permission of the rights owner (Cambridge University Press) freely accessib...