© 2014 IEEE. We propose a novel exemplar-based feature enhancement method for automatic speech recognition which uses coupled dictionaries: an input dictionary containing atoms sampled in the modulation (envelope) spectrogram domain and an output dictionary with atoms in the Mel or full-resolution frequency domain. The input modulation representation is chosen for its separation properties of speech and noise and for its relation with human auditory processing. The output representation is one which can be processed by the ASR back-end. The proposed method was investigated on the AURORA-2 and AURORA-4 databases and improved word error rates (WER) were obtained when compared to the system which uses Mel features in the input exemplars. The p...