It is conjectured that every closed manifold admitting an Anosov diffeomorphism is, up to homeomorphism, finitely covered by a nilmanifold. Motivated by this conjecture, an important problem is to determine which nilmanifolds admit an Anosov diffeomorphism. The main theorem of this article gives a general method for constructing Anosov diffeomorphisms on nilmanifolds. As a consequence, we give new examples which were overlooked in a corollary of the classification of low-dimensional nilmanifolds with Anosov diffeomorphisms and a correction to this statement is proven. This method also answers some open questions about the existence of Anosov diffeomorphisms which are minimal in some sense.status: publishe