This paper discusses the idea of a lifting scheme for multiscale implementation of kernel estimation procedures used in statistical estimation. The resulting decomposition is related to the Burt-Adelson pyramid, but the design of the filters is well adapted to nonequispaced samples. The proposed decomposition has an oversampling rate of 2, where the oversampling can be seen as an alternative to primal lifting steps (update steps) as a tool for stabilising and anti-aliasing. We then propose an adaptive version of this multiscale kernel estimation with truncated kernels. Truncated kernels allow sharp representations of jumps. Illustrations show that our method is numerically well conditioned, suffers lee from visual effects due to false detec...
Image filtering is often applied as a post-process to Monte Carlo generated pictures, in order to re...
Abstract. In this work, we develop a method of adaptive nonparametric estimation, based on "war...
This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimens...
This paper puts forward a new multiscale decomposition. This can be applied to nonparametric regress...
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. ...
Summary. In this paper we propose a simple multistep regression smoother which is constructed in a b...
Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of length...
This paper proposes the use of adaptive kernel in a meshsize boosting algorithm in kernel density es...
Journal PaperThis paper develops new algorithms for adapted multiscale analysis and signal adaptive ...
In computer vision and increasingly, in rendering and image processing, it is useful to filter image...
Mode estimation is extensively studied in statistics. One of the most widely used methods of mode es...
The lifting scheme was introduced as a flexible tool to construct compactly supported second generat...
This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density e...
We propose and study a kernel estimator of a density in which the kernel is adapted to the data but ...
This paper develops nonlinear kernel adaptive filtering algorithms based on the set-membership filte...
Image filtering is often applied as a post-process to Monte Carlo generated pictures, in order to re...
Abstract. In this work, we develop a method of adaptive nonparametric estimation, based on "war...
This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimens...
This paper puts forward a new multiscale decomposition. This can be applied to nonparametric regress...
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. ...
Summary. In this paper we propose a simple multistep regression smoother which is constructed in a b...
Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of length...
This paper proposes the use of adaptive kernel in a meshsize boosting algorithm in kernel density es...
Journal PaperThis paper develops new algorithms for adapted multiscale analysis and signal adaptive ...
In computer vision and increasingly, in rendering and image processing, it is useful to filter image...
Mode estimation is extensively studied in statistics. One of the most widely used methods of mode es...
The lifting scheme was introduced as a flexible tool to construct compactly supported second generat...
This paper proposes the use of adaptive kernel in a bootstrap boosting algorithm in kernel density e...
We propose and study a kernel estimator of a density in which the kernel is adapted to the data but ...
This paper develops nonlinear kernel adaptive filtering algorithms based on the set-membership filte...
Image filtering is often applied as a post-process to Monte Carlo generated pictures, in order to re...
Abstract. In this work, we develop a method of adaptive nonparametric estimation, based on "war...
This paper discusses wavelet thresholding in smoothing from non-equispaced, noisy data in one dimens...