Deel I Principale Componenten Analyse (PCA) is een methode om hoogdimensionale gegevens om te zetten in laagdimensionale gegevens via de bepaling van e en kleinere deelruimte die goed bij de data aansluit. De berekening van deze PCA-deelruimte wordt echter sterk beïnvloed door de aanwezighe id van abnormale waarden. Daarom stellen we een robuuste PCA methode ROB PCA voor die een combinatie inhoudt van enkele welbekende technieken bin nen robuuste PCA. Deze methode kan gebruikt worden als een stand-alone f unctie, maar in vele situaties dient deze schatter echter als een soort van preprocessing. Ik heb twee zo n toepassingen van PCA bestudeerd in h et gebied van classificatie en PLS regressie. Deel II In Portnoy (2003) is de standa...
AbstractIn this article, we propose a new estimation methodology to deal with PCA for high-dimension...
© 2019 Elsevier B.V. Dimension reduction is often an important step in the analysis of high-dimensio...
Motivation: Principal components analysis (PCA) is a very popular dimension reduction technique that...
Voor de exploratieve analyse van tweeweg-gegevens, bijvoorbeeld scores van personen op variabelen, i...
Data analysis in management applications often requires to handle data with a large number of varia...
__Abstract__ A common task in statistical practice is the estimation of unknown parameters from a...
Massive volumes of data are currently being generated, and at astonishing speed. Technological advan...
The analysis of high-dimensional data often begins with the identification of lower dimensional subs...
Principal Component Analysis (PCA) is a mathematical instrument beneficial for its dimension reducti...
Principal Component Analysis (PCA) is a very versatile technique for dimension reduction in multivar...
Principal Component Analysis (PCA) is a widely used technique for reducing dimensionality of multiva...
Proceedings of the 29th International Conference on Machine Learning, ICML 20121249-25
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will ...
Principle Component Analysis (PCA) is a powerful tool used in the field of statistics. In a given or...
In principal component analysis (PCA), the principal components (PC) are linear combinations of the ...
AbstractIn this article, we propose a new estimation methodology to deal with PCA for high-dimension...
© 2019 Elsevier B.V. Dimension reduction is often an important step in the analysis of high-dimensio...
Motivation: Principal components analysis (PCA) is a very popular dimension reduction technique that...
Voor de exploratieve analyse van tweeweg-gegevens, bijvoorbeeld scores van personen op variabelen, i...
Data analysis in management applications often requires to handle data with a large number of varia...
__Abstract__ A common task in statistical practice is the estimation of unknown parameters from a...
Massive volumes of data are currently being generated, and at astonishing speed. Technological advan...
The analysis of high-dimensional data often begins with the identification of lower dimensional subs...
Principal Component Analysis (PCA) is a mathematical instrument beneficial for its dimension reducti...
Principal Component Analysis (PCA) is a very versatile technique for dimension reduction in multivar...
Principal Component Analysis (PCA) is a widely used technique for reducing dimensionality of multiva...
Proceedings of the 29th International Conference on Machine Learning, ICML 20121249-25
As the collection of large datasets becomes increasingly automated, the occurrence of outliers will ...
Principle Component Analysis (PCA) is a powerful tool used in the field of statistics. In a given or...
In principal component analysis (PCA), the principal components (PC) are linear combinations of the ...
AbstractIn this article, we propose a new estimation methodology to deal with PCA for high-dimension...
© 2019 Elsevier B.V. Dimension reduction is often an important step in the analysis of high-dimensio...
Motivation: Principal components analysis (PCA) is a very popular dimension reduction technique that...