Philosophiae Doctor - PhDIn a category C with a proper (E; M)-factorization system for morphisms, we further investigate categorical topogenous structures and demonstrate their prominent role played in providing a uni ed approach to the theory of closure, interior and neighbourhood operators. We then introduce and study an abstract notion of C asz ar's syntopogenous structure which provides a convenient setting to investigate a quasi-uniformity on a category. We demonstrate that a quasi-uniformity is a family of categorical closure operators. In particular, it is shown that every idempotent closure operator is a base for a quasi-uniformity. This leads us to prove that for any idempotent closure operator c (interior i) on C there is ...