International audienceThis chapter presents a new methodology to perform health monitoring of hybrid systems under uncertainty. Hybrid systems can be represented as multi-mode systems with hybrid automata. Diagnosers are generated from these hybrid automata using a new data structure in order to monitor both the behavior and degradation of such systems. After a review of the state of the art on different existing solutions for diagnosis of hybrid systems under uncertainty, we propose to introduce the Hybrid Particle Petri Nets (HPPN) modeling framework. The main advantage of HPPN is that they take into account knowledge-based uncertainty in the system representation and uncertainty in the diagnosis process. The HPPN-based diagnoser deals wi...