\u3cp\u3eThe amount of time series data generated in Healthcare is growing very fast and so is the need for methods that can analyse these data, detect anomalies and provide meaningful insights. However, most of the data available is unlabelled and, therefore, anomaly detection in this scenario has been a great challenge for researchers and practitioners. Recently, unsupervised representation learning with deep generative models has been applied to find representations of data, without the need for big labelled datasets. Motivated by their success, we propose an unsupervised framework for anomaly detection in time series data. In our method, both representation learning and anomaly detection are fully unsupervised. In addition, the training...