Compressive sensing is an alternative to Nyquist-rate sampling when the signal to be acquired is known to be sparse or compressible. A sparse signal has a small number of nonzero components compared to its total length. This property can either exist either in the sampling domain, i. e. time or space, or with respect to a transform basis. There is a parallel between representing a signal in a compressed domain and feature extraction. In both cases, there is an effort to reduce the amount of resources required to describe a large set of data. A given feature is often represented by a set of parameters, which only acquire a relevant value in a few points in the image plane. Although there are some works reported on feature extraction from com...